Chaos-based true random number generators

نویسندگان

  • Luis L Bonilla
  • Mariano Alvaro
  • Manuel Carretero
چکیده

*Correspondence: [email protected] Gregorio Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, Leganés, 28911, Spain Abstract Random number (bit) generators are crucial to secure communications, data transfer and storage, and electronic transactions, to carry out stochastic simulations and to many other applications. As software generated random sequences are not truly random, fast entropy sources such as quantum systems or classically chaotic systems can be viable alternatives provided they generate high-quality random sequences sufficiently fast. The discovery of spontaneous chaos in semiconductor superlattices at room temperature has produced a valuable nanotechnology option. Here we explain a mathematical model to describe spontaneous chaos in semiconductor superlattices at room temperature, solve it numerically to reveal the origin and characteristics of chaotic oscillations, and discuss the limitations of the model in view of known experiments. We also explain how to extract verified random bits from the analog chaotic signal produced by the superlattice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel design method for discrete time chaos based true random number generators

Discrete time chaos based true random number generators are lightweight cryptographic primitives that offer scalable performance for the emerging low power mobile applications. In this work, a novel design method for discrete time chaos based true random number generators is developed using skew tent map as a case study. Optimum parameter values yielding maximum randomness are calculated using ...

متن کامل

Chaos-based Pseudo-Random Number Generators and Chip Implementation

Cryptography as an ancient subject is endowed with new vigor by chaos theory. Cryptography protects the security of today’s ubiquitous Internet communication, which as an open network is vulnerable to attack. In this paper, chaos-based cryptography is surveyed with focus on designing chaotic pseudo-random number generators (CPRNGs) for stream cipher and their chip implementation. The properties...

متن کامل

Communication between Synchronized Random Number Generators

In most published chaos-based communication schemes, the system’s parameters used as a key could be intelligently estimated by a cracker based on the fact that information about the key is contained in the chaotic carrier. In this paper, we will show that the least significant digits (LSDs) of a signal from a chaotic system can be so highly random that the system can be used as a random number ...

متن کامل

Chaos-Based Random Number Generators—Part I: Analysis

This paper and its companion (Part II) are devoted to the analysis of the application of a chaotic piecewise-linear onedimensional (PL1D) map as random number generator (RNG). Piecewise linearity of the map enables us to mathematically find parameter values for which a generating partition is Markov and the RNG behaves as a Markov information source, and then to mathematically analyze the infor...

متن کامل

CPU Time Jitter Based Non-Physical True Random Number Generator

Today’s operating systems provide non-physical true random number generators which are based on hardware events. With the advent of virtualization and the ever growing need of more high-quality entropy, these random number generators reach their limits. Additional sources of entropy must be opened up. This document introduces an entropy source based on CPU execution time jitter. The design and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016